Master 2 Course
De Wikimacs.
(Différences entre les versions)
(→Lecture overview) |
|||
Ligne 19 : | Ligne 19 : | ||
** elastodynamics | ** elastodynamics | ||
* Important issues | * Important issues | ||
+ | * Academic Examples | ||
* Examples of applications in automotive and aeronautic industries | * Examples of applications in automotive and aeronautic industries | ||
+ | * Mathematical basis | ||
+ | ** The single and double layer distributions | ||
+ | ** The jump formula | ||
+ | ** Fourier transform: definition, main properties, causality | ||
+ | ** Elementary solution: general concept, application to the Laplace operator in 3D, application to the Harmonic oscillator |
Version actuelle en date du 1 février 2013 à 00:11
Advanced Boundary Element Methods for Wave Propagation
Lecture 1: introduction
Lecture overview
- Useful references
- Jean-Claude Nédélec, « Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems », Applied Mathematical Sciences 144, Springer.
- Isabelle Terrasse & Toufic Abboud, « Modélisation des phénomènes de propagation d’ondes », cours de l’école polytechnique.
- Presentation of the course
- Introduction to the mathematical analysis of the diffraction problem
- Integral representation theorem
- Integral equations in the frequency domain
- Boundary Element Method in the Frequency Domain (FD BEM)
- Fast Multipole Method
- Integral equations in the time domain - Time domain BEM
- Current research and future trends
- Modeling
- acoustics
- electromagnetics
- elastodynamics
- Important issues
- Academic Examples
- Examples of applications in automotive and aeronautic industries
- Mathematical basis
- The single and double layer distributions
- The jump formula
- Fourier transform: definition, main properties, causality
- Elementary solution: general concept, application to the Laplace operator in 3D, application to the Harmonic oscillator