Master 2 Course

De Wikimacs.

(Différences entre les versions)
(Lecture overview)
 
(18 versions intermédiaires masquées)
Ligne 1 : Ligne 1 :
= Advanced Boundary Element Methods for Wave Propagation =
= Advanced Boundary Element Methods for Wave Propagation =
-
== Lecture 1: introduction (20/01/11)==
+
== Lecture 1: introduction ==
=== Lecture overview ===
=== Lecture overview ===
* Useful references
* Useful references
-
*#Jean-Claude Nédélec, « Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems », Applied Mathematical Sciences 144, Springer.
+
*#Jean-Claude Nédélec, « [http://books.google.fr/books?id=NABGVMOHBqEC&printsec=frontcover&dq=Acoustic+and+Electromagnetic+Equations,+Integral+Representations+for+Harmonic+Problems&source=bl&ots=rhePtnlHUl&sig=rXUBozN7kFiqliSana81RkMhzPI&hl=fr&ei=k1w5TYWVEIat8QO-u9WuCA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CCUQ6AEwAQ#v=onepage&q&f=false Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems] », Applied Mathematical Sciences 144, Springer.
*# Isabelle Terrasse & Toufic Abboud, « [http://catalogue.polytechnique.fr/site.php?id=123 Modélisation des phénomènes de propagation d’ondes] », cours de l’école polytechnique.   
*# Isabelle Terrasse & Toufic Abboud, « [http://catalogue.polytechnique.fr/site.php?id=123 Modélisation des phénomènes de propagation d’ondes] », cours de l’école polytechnique.   
-
* Modélisation §1.2.1 et §1.2.2
+
* Presentation of the course
-
 
+
** Introduction to the mathematical analysis of the diffraction problem
-
===TD : équation des ondes 1D ===
+
** Integral representation theorem
-
# D’Alembert §2.2.1 et §2.2.2. [http://imacs.polytechnique.fr/CoursX/exo1.pdf  Feuille d'exercice No. 1] - exo 1
+
** Integral equations in the frequency domain
-
# Energie §2.2.4              [http://imacs.polytechnique.fr/CoursX/exo1.pdf  Feuille d'exercice No. 1] - exo 2
+
** Boundary Element Method in the Frequency Domain (FD BEM)
 +
** Fast Multipole Method
 +
** Integral equations in the time domain - Time domain BEM
 +
** Current research and future trends
 +
* Modeling
 +
** acoustics
 +
** electromagnetics
 +
** elastodynamics
 +
* Important issues
 +
* Academic Examples
 +
* Examples of applications in automotive and aeronautic industries
 +
* Mathematical basis
 +
** The single and double layer distributions
 +
** The jump formula
 +
** Fourier transform: definition, main properties, causality
 +
** Elementary solution: general concept, application to the Laplace operator in 3D, application to the Harmonic oscillator

Version actuelle en date du 1 février 2013 à 00:11

Advanced Boundary Element Methods for Wave Propagation

Lecture 1: introduction

Lecture overview

  • Useful references
    1. Jean-Claude Nédélec, « Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems », Applied Mathematical Sciences 144, Springer.
    2. Isabelle Terrasse & Toufic Abboud, « Modélisation des phénomènes de propagation d’ondes », cours de l’école polytechnique.
  • Presentation of the course
    • Introduction to the mathematical analysis of the diffraction problem
    • Integral representation theorem
    • Integral equations in the frequency domain
    • Boundary Element Method in the Frequency Domain (FD BEM)
    • Fast Multipole Method
    • Integral equations in the time domain - Time domain BEM
    • Current research and future trends
  • Modeling
    • acoustics
    • electromagnetics
    • elastodynamics
  • Important issues
  • Academic Examples
  • Examples of applications in automotive and aeronautic industries
  • Mathematical basis
    • The single and double layer distributions
    • The jump formula
    • Fourier transform: definition, main properties, causality
    • Elementary solution: general concept, application to the Laplace operator in 3D, application to the Harmonic oscillator
Outils personnels