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Abstract

Acoustic simulations are very demanding in computational resources. Time Domain
Boundary Element Method (TD-BEM) is a new efficient formalism for large frequency
bandwidth problems. It proves to be very well adapted to parallel computing on both SMP and
distributed architectures. In this paper, we present the numerical method and the parallelization
methodology. We finally show some preliminary results on HP J6000 Computing Farms and
HP RP8400 SMP computer. Porting and optimization on Intel Itanium 2 (McKinley) based
HP-Cluster is on-going and bigger industrial test cases will be presented at the conference.

1 Introduction
Noise is becoming a more and more sensitive parameter in nowadays automotive, aeronautics
and aerospace industries. Frequency Domain Boundary Element Method (FD-BEM) is the
reference numerical method for low and mid-range frequency simulations. This method only
requires a mesh of the boundary of the fluid domain, with a mesh step

�
that resolve the

wavelength � . Generally, a value
��� ����� leads to good results for most applications. If

we recall that the wavelength is related to the frequency � by the relation: �
	����� , where� is the sound speed, we find that the number of spatial unknowns ��� grows like ��������� . For
each frequency, this method leads to solve a dense symmetric complexe linear system, and
thus memory requirements grow as ��������� and CPU time as ��������� if a direct method is used.
In general, this has to be done for ����	 ������� different frequencies in the intervall ��!#"$��� .
So, if we want to double the frequency value, memory is mutiplied by 16 and CPU time by
32 for one single frequency and by 64 if all the frequency band is required! In automotive
applications, acoustic design engineers rarely use meshes with more than 10,000 unknows.
This hardly allows to simulate a full car for frequencies larger than a few hundred Hz, on a
modern mono-processor computer. Industrial needs go up to 3000 Hz which involves several
hundreds of thousand of unknowns! In aeronautics, simulation of the acoustic radiation of
nacelles requires also several hundreds of unknowns! That gives an idea of the big need for
new efficient methods and parallel codes.

In this paper, we first present the Time Domain Boundary Element Method (TD-BEM)
a new efficient method for acoustic simulation. Its main advantage compared to classical
(FD-BEM) is that one single computation followed by a Fast Fourier Transform gives the
acoustic response in a large frequency band. The memory requirement is almost the same
but computational complexity is much less for broadband responses: �����%��'& �)(*� = ������+�� ,
where � ( is the number of time steps, � ( 	,������� , to compare with ���-�'.� & �/�0� = ������1��
for FD-BEM, as �2�3	4������� in this case. Next, we show how we have parallelized the
software SONATE that implements TD-BEM. We choose a message passing model based on
MPI which allows SONATE to run on SMP architectures as well as distributed ones. We show
some preliminary results obtained on a HP J6000 Computing Farm and on a HP RP8400. A
good scalability is obtained on both platforms with better performances on the Computing
Farm. Porting and optimization on IA-64 architecture is in progress and we plan to perform
bigger industrial cases by the Conference.
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2 Time Domain BEM
A function of the time variable 5 is said to be causal if it is zero for negative 5 . We consider
a bounded regular domain 6 in 798 , it is called the interior domain. :
;<7=8)> 6 is called the
exterior domain. Their common boundary is denoted by ? .

The goal is to find causal solutions of the (normalized) acoustic system

(1)

@AAB AAC
D0ED 5GF 5IHKJ�L)MONQPSR/TU F 5IHKJVLW; XD TUD 5 F 5IHKJ�L)M TY E F 5IHKJ�L ; X F 5IHKJVL[Z\7^]�6`_a:

with some boundary conditions. Boundary Element Methods are based on the existence of an
integral representation formula which gives the solution anywhere if we know some quantity on
the boundary. In this case, the representation formula is called the retarded potentials formula:

(2)

E F 5IHbJVLc; dfehgi�j�k)lU�m F 5on k HKp#L*qr?9s�Md e F TJtn3Tp#LouvTw sirj�k 8 x F 5on k HKp#L*qr?9s[M�d e F TJanyTp#LouvTw si�j�k{z lx F 5on k HbpQLKq�?9s
for F 5IHKJ�L|Z\7\]}6~_�: , with

k ;�� J�ntp�� , U�m ;��-TU u�TwV� ; F TU u�Tw L��2n F TU u�Tw L*� , x ;3� E � ; E �2n E � ,
the dot denotes the time derivative. We have an equivalent formula for TU . Imposing the
boundary conditions, we obtain the so called integral equation. The problem is then written
in a variational form that can be discretized by a Time-Space Finite Element Method. In
order to obtain a stable numerical scheme, we have satisfied some energy conservation in the
discrete formulation. Whatever the boundary conditions are, the discretization always implies
a convolution system:

(3) ���I����� �{� m � � ;�� m w ;�XvH g Hu�uuVH$�)�
where � ����� are linear combination of terms of the form

df���vdf����gi�j�� q����#qr�¡ 5 �/¢ � ¢ 5 � �¤£� � is sparse since only elements which are of order ¥#¦/5 distant are interacting (cf. fig1).
Total number of non-zero elements in all matrices is § F � z¨ L . � m � � is the vector of degrees of
freedom at time F w n©¥#Lb¦ª5 and � m the right-hand side, i.e. the excitation, at time w ¦/5 .

The resolution procedure is as follows:« Equation (3) also writes

(4) � � � m M ���I� £ � � �
m � � ;�� m� m � � ;�X for w n©¥a¬
X because of the causality condition!« From (4), execute the recursive algorithm

step 1: convolution

(5) � m ;^� m n ���®� £ � � �
m � �
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(k+1) DtkDt

FIG. 1. Elementary Interactions.

where at each step ¯{° is updated from
step 2: linear system

(6) ±³²¯ °�´^µ¶ °
with a matrix ± ² which is symmetric and positive definite.
Steps 1 and 2 are then repeated until · ´�¸/¹ .º Post-processing: Extract the field using the integral representation formula and perform
the FFT to obtain the frequency domain fields.

3 Parallelism model
As frequency grows, SONATE becomes more and more demanding in memory space and CPU
cycles. The two important phases to optimize are the solving of the convolution system (3)
and the post-processing phase which consist in using the integral representation formula (2) in
order to obtain the pressure and the velocity and deduce other quantities as the radiated power.
The generic term appearing in the post-processing phase is of the form:

(7) »f¼ ¯Q½�¾o¿ÁÀ Ât¿%Ã�ÀÅÄbÃ#ÆÇrÈ À Âa¿ÉÃ�À ÊrË ½-ÃQÆ ´�Ì|Í¡Î�ÏÐÑ#Ò¤Ó »f¼QÔ ¯Q½-¾¤¿ÁÀ Âa¿ÉÃ�ÀÕÄKÃ#ÆÇ�È À Ât¿ÉÃ�À ÊrË Ñ ½�Ã#Æ
where Ë Ñ is triangle number Ö , and ¸`×}Ø�Ù the number of triangles in the mesh. Post-
processing can be easily parallelized by distributing the triangles equally on all nodes.

These two phases can be naturally parallelized using message passing model as MPI. The
OPEN MP parallel programming model may also be used but is limited to SMP architectures,
moreover, we believe that it would be harder to reach the same parallel efficiency. In the sequel,
we will only discuss the parallelization of the convolution.

4 Solving the convolution system
The convolution system (3) is solved step by step: it is a marching-on-in-time algorithm. At
each time step, solving the linear system (6) can be done either by using a conjugate gradient
algorithm or an efficient direct sparse solver (HP mlib) which is better in the case of ill-
conditioned matrices occuring with very irregular meshes. With both methods, this is an
insignificant step compared to the convolution. This may not be true for small meshes and
large number of processors, but parallel computing with SONATE is meant for big cases, i.e.
more than 10,000 unknowns. Its complexity grows almost linearly whereas (5) is quadratic.
So, at the moment, this step is left sequential.



4 ABBOUD ET AL.

The principle of the parallelization of (5) is simple and purely algebraic: it consists in
achieving the same computational tasks on subsets of data distributed on all the nodes. More
precisely:Ú

each matrix Û3Ü is splitted round-robin by row into Nproc sparse matrices Ý�Þ/ß©Ý/Þ
having approximately the same number of non-zero elements:Û Ü�à Û Üá�â�ã�ãã�â Û ÜNproc ä�åÚ
matrices æ�ÛyÜç�è Ü®é á�êìëìëìëbê í are respectively stored on node î ’s local disk. During computa-
tion, processor î accesses matrices æ�Û�Üç�è ÜIé á�êìëìëìë*ê íÚ
at time step ï , processor î computes :

(8) ðñIòç à ñIòç/ó íôÜ®é å Û ÜçVõ ò ä Ü
As matrices æ�Û3Üç è ç é áêìëìëìë*ê Nproc have almost the same number of non-zero elements, load
balancing is fair and the local complexity is ö�æ�ÝÉ÷ÞVø Nproc è .
Once ðñ òç is computed, it is sent to the master process that will perform the reduction
operation:

(9) ðñIò à Nprocô ç é á ðñIòçÚ
the master process solves the linear system (6) then broadcasts the resulting vector õ ò to
all the slaves.

This paradigm of parallelization of TD-BEM does not need a reformulation of the equations
and always gives the same numerical result for any number of processors. This is to be
compared with Domain Decomposition used to parallelize Finite Element codes.

5 Sizing
The characteristic numbers governing memory, computational and communications needs are:Ú

memory/node: ö�æ-Ý ÷ÞVø Nproc èÚ
CPU/iter: ö�æ�Ý`÷ÞVø Nproc è for convolution (8)Ú
Communication/iter: ö�æ�ù�ßúÝ Þ ß Nproc è

In order to balance CPU and communications, Nproc has to grow as ö�æ-Ý åKû ÷Þ è . If so, memory,
CPU and communications grow as ö�æ-ÝÉü û ÷Þ è . If CPU/iter was privileged, Nproc may grow up
to ö�æ-Ý2Þ è , but it is not reasonable in practice for big cases.

The growth of memory per node ö�æ-Ý ü û ÷Þ è can be satisfied by out-of-core implementation.
SONATE implements the out-of-core in the same way for sequential and parallel treatment and
uses asynchronous I/O. Further, the algorithm has been optimized in order to minimize the
number of read operations by precomputing as much as possible matrix-vector products in the
convolution process.

Taking into account the above rules, and the preliminary tests, we expect that a case withÝ Þ à 100,000 will be computed in about 6h on a 48 processors cluster, each node having 4GB
of memory.
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6 Performances on HP J6000 Computing Farm
We have tested a 16 nodes / 2 PA-RISC 8600 - 550MHz per node / 4GB per node farm
interconnected by a HP Hyperfabric network based on Myrinet 1 protocol. All computations
have been achieved using 1 CPU per node.

We have used a Peugeot 206 car mesh shown on fig. 2 (a), with 18264 triangles and 9355
vertices, provided with the courtesy of PSA. This mesh allows accurate simulations up to
500Hz. In this case, with CFL=0.5, aggregate matrices size is 1.8GB.

Figure 2 (b) shows in-core wall clock time for 2, 4, 8 and 16 nodes and out-of-core for one
node (3100s). The in-core one node time (3988s) has been penalized by the big size of this
case for a single node. On 16 CPU, we solve acoustic problem from 0 up to 500Hz (several
hundreds of frequencies) in less than 4mn. An optimized parallel FD-BEM code would solve
one single frequency in 2mn.

Figure 3 (a) shows superlinear speed-up up to 8 CPU. The speed up was computed by taking
the out-of-core wall clock time as reference.

Figure 3 (b) compares Hyperfabric and Ethernet 100BT performances. For this (relatively
small) case, a high performance network is not too critical up to 8 CPUs.

(a) Mesh (18264 triangles).
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FIG. 2. Scalability of SONATE on Peugeot 206 case (PSA).
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FIG. 3. Scalability of SONATE on the Peugeot 206 case.
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7 Performances on HP RP8400
In this section, we show results on two cases: First, we consider a refined Peugeot 206 mesh
shown in fig. 4: 73056 triangles and 37056 vertices. We have run on an HP RP8400 / 16 CPU
PA-8700 700 MHz / 16GB of memory. Resolution wall clock time of the acoustic response
in the interval (0, 1000Hz) is 1h30. A FD-BEM code would have computed one frequency
in about 10h. We also show the case of an engine block (fig. 5 (a)) 16158 triangles and 8086
vertices. Figure 5 (b) shows the speed-up from 1 to 8 CPU.

FIG. 4. The refined Peugeot 206 mesh (PSA).

(a) Mesh (16158 triangles).
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FIG. 5. SONATE performances on HP RP8400 - engine case : gain.
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