Numerical prediction of SDOF-Perforated Plate Acoustic Treatment Impedance. Part 1: Linear domain

Dr. Stéphane LIDOINE*
AIRBUS France, P.O. Box MO112/4 316 Route de Bayonne31060 TOULOUSE Cedex 03, FRANCE

Dr. Isabelle TERRASSE†
EADS Innovation Work, 12 Rue PasteurBP76 92152 SURESNES, FRANCE

and

Dr. Toufic ABBOUD‡ and Ahmed BENNANI§
IMACS, XTEC, Ecole Polytechnique, 91128 PALAISEAU Cedex, FRANCE

A new numerical prediction tool has been developed in order to improve acoustics impedance predictions for typical Nacelle SDOF with perforated-plate liners, accounting for realistic geometry and flow. This method is based on domain breakdown and Linearized Compressible Navier-Stokes equations in the holes. Numerical Results are successfully compared to analytical predictions and measurements in the linear domain without flow. Next steps are non-linear effects and the influence of grazing mean flow.

Nomenclature

\[c_0 = \text{Sound velocity, m.s}^{-1} \]
\[d = \text{Holes diameter, m} \]
\[d_1, d_2 = \text{Elementary period sizes, m} \]
\[D = \text{Cavity lateral size, m} \]
\[e = \text{Plate thickness, m} \]
\[e' = \text{Corrected thickness, m} \]
\[f = \text{Frequency, Hz.} \]
\[h = \text{Cell depth, m} \]
\[k=\omega/c_0 = \text{Wave number, m}^{-1} \]
\[p = \text{Acoustics pressure, Pa} \]
\[p_{\text{inc}}, p_{\text{sc}} = \text{Incident, scattered pressure, Pa} \]
\[R = \text{Reduced Resistance} \]
\[V = \text{Acoustics velocity, m.s}^{-1} \]
\[x_1, x_2, x_3 = \text{Spatial coordinates, m} \]
\[Z = \text{Reduced Impedance} \]
\[Z_{\text{cav}}, Z_{\text{res}} = \text{Impedance of the cavity, of the resistive sheet} \]
\[\lambda = \text{Wavelength, m} \]
\[\sigma = \text{Porosity (POA), } \% \]
\[\nu = \text{Kinematic viscosity, m}^2\text{s}^{-1} \]
\[\rho_0 = \text{Air density, kg.m}^{-3} \]
\[\Sigma = \text{Rigid surface} \]
\[\Sigma', \Sigma'' = \text{Interfaces between holes and Euler domain} \]
\[\omega = 2\pi f = \text{Wave pulsation, s}^{-1} \]

I. Introduction

I. Noise represents half of Aircraft Noise at both landing and take-off conditions. This noise source is mainly reduced thanks to Acoustic treatments installed inside nacelle inlet and bypass ducts. These treatments allow decreasing the overall Aircraft Perceived Noise Level by 4 to 5 dB at take-off and 2 dB at approach. In the last decades, Airbus invested a lot in the development of nacelle low noise technologies and associated optimisation.

* Research Engineer, Nacelle Acoustics, stephane.lidoine@airbus.com
† Senior Expert, Applied Mathematics and Scientific Computing, isabelle.terrasse@eads.net
‡ CTO, abboud@imacs.polytechnique.fr
§ Research Engineer, ab@imacs.polytechnique.fr

Copyright © 2007 by AIRBUS S.A.S. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

1 American Institute of Aeronautics and Astronautics